8/23/2015

Lazarus on Raspberry Pi

Lazarus on Raspberry Pi

Lazarus on Raspbian Wheezy.
Lazarus on Raspbian Wheezy
Raspberry Pi Logo.png
This article applies to Raspberry Pi only.
SOURCE: http://wiki.freepascal.org/Lazarus_on_Raspberry_Pi
The Raspberry Pi is a credit-card-sized single-board computer. It has been developed in the UK by the Raspberry Pi Foundation with the intention of stimulating the teaching of basic computer science in schools. Raspberry Pis are also used for multiple other purposes that are as different as media servers, robotics and control engineering.
The Raspberry Pi Foundation recommends Raspbian Wheezy as standard operating system. Alternative systems running on RPI include RISC OS and various Linux distributions, as well as Android.
Lazarus runs natively under the Raspbian operating system.

Contents

 [hide

Installing and compiling Lazarus

Simple installation under Raspbian

Raspberry Pi 1

In the Raspbian OS it is easy to install Lazarus and Free Pascal. In order to do this simply open a terminal window and type:
sudo apt-get update
sudo apt-get upgrade
sudo apt-get install fpc
sudo apt-get install lazarus
This installs a precompiled, stable version of FPC and Lazarus on the Raspberry Pi. Of course, a network connection is required. Installation may take about 30 minutes, but major portions of this process take place automatically. After installation you may instantly start Lazarus from the "Programming" section of the LXDE start menu.
If you need a newer version, or if Lazarus complains about a broken leakview, here.

Raspberry Pi 2

Since June 2015 the regular "out of the box" installation method also works for Raspberry Pi 2 Model B. The version that gets installed is, however, quite old. For those looking to build the latest FPC and Lazarus IDE see this article.

Cross compiling for the Raspberry Pi from Windows

1. Using fpcup
One way is to use fpcup to set up a cross compiler; follow these instructions: fpcup#Linux_ARM_cross_compiler
2. Using scripts
Alternatively, for a more manual approach using batch files, you can follow these steps.
2.1 Prerequisites
FPC 2.7.1 or higher installed with sourcecode
Install the Windows version from the Linaro binutils for linux gnueabihf into %FPCPATH%/bin/win32-armhf-linux [1]
2.2 Example Build Script (adapt paths as needed)
set PATH=C:\pp\bin\i386-win32;%PATH%;
set FPCMAKEPATH=C:/pp
set FPCPATH=C:/pp
set OUTPATH=C:/pp271
%FPCMAKEPATH%/bin/i386-win32/make distclean OS_TARGET=linux CPU_TARGET=arm  CROSSBINDIR=%FPCPATH%/bin/win32-armhf-linux CROSSOPT="-CpARMV6 -CfVFPV2 -OoFASTMATH" FPC=%FPCPATH%/bin/i386-win32/ppc386.exe
 
%FPCMAKEPATH%/bin/i386-win32/make all OS_TARGET=linux CPU_TARGET=arm CROSSBINDIR=%FPCPATH%/bin/win32-armhf-linux CROSSOPT="-CpARMV6 -CfVFPV2 -OoFASTMATH" FPC=%FPCPATH%/bin/i386-win32/ppc386.exe
if errorlevel 1 goto quit
%FPCMAKEPATH%/bin/i386-win32/make crossinstall CROSSBINDIR=%FPCPATH%/bin/win32-armhf-linux CROSSOPT="-CpARMV6 -CfVFPV2 -OoFASTMATH" OS_TARGET=linux CPU_TARGET=arm FPC=%FPCPATH%/bin/i386-win32/ppc386.exe INSTALL_BASEDIR=%OUTPATH%
 
:quit
pause
With the resulting ppcrossarm.exe and ARM RTL you will be able to build a cross Lazarus version as usual and compile FPC projects for the Raspberry Pi and other armhf devices. Remember that not all - especially Windows - libraries are available for Linux arm.

Compiling from sources

You may want to compile Lazarus from subversion sources. See Michell Computing: Lazarus on the Raspberry Pi for details.
Compiling from sources on Raspberry with Gentoo (and other distro)

If you want to install the latest stable release of fpc and, additional and isolated, the trunk fpc compiler: you can read the following guide. It was written using gentoo but this guide will be useful with any distro: Install fpc on Raspberry with Gentoo

Accessing external hardware

Raspberry Pi pinout
Raspberry Pi pinout of external connectors
One of the goals in the development of Raspberry Pi was to facilitate effortless access to external devices like sensors and actuators. There are five ways to access the I/O facilities from Lazarus and Free Pascal:
  1. Direct access using the BaseUnix unit
  2. Access through encapsulated shell calls
  3. Access through the wiringPi library.
  4. Access through Unit rpi_hal.
  5. Access through Unit PiGpio.
  6. Access through the PascalIO library.

1. Native hardware access

Simple test program for acessing the GPIO port on Raspberry Pi
Test circuit for GPIO access with the described program
Simple demo implementation of the circuit from above on a breadboard
This method provides access to external hardware that doesn't require additional libraries. The only requirement is the BaseUnix library that is part of Free Pascal's RTL.

Switching a device via the GPIO port

The following example lists a simple program that controls the GPIO pin 17 as output to switch an LED, transistor or relais. This program contains a ToggleBox with name GPIO17ToggleBox and for logging return codes a TMemo called LogMemo.
For the example, the anode of a LED has been connected with Pin 11 on the Pi's connector (corresponding to GPIO pin 17 of the BCM2835 SOC) and the LED's cathode was wired via a 68 Ohm resistor to pin 6 of the connector (GND) as previously described by Upton and Halfacree. Subsequently, the LED may be switched on and off with the application's toggle box.
The code requires to be run as root, i.e. either from a root account (not recommended) or via su.
Controlling unit:
unit Unit1;
 
{Demo application for GPIO on Raspberry Pi}
{Inspired by the Python input/output demo application by Gareth Halfacree}
{written for the Raspberry Pi User Guide, ISBN 978-1-118-46446-5}
 
{$mode objfpc}{$H+}
 
interface
 
uses
  Classes, SysUtils, FileUtil, Forms, Controls, Graphics, Dialogs, StdCtrls,
  Unix, BaseUnix;
 
type
 
  { TForm1 }
 
  TForm1 = class(TForm)
    LogMemo: TMemo;
    GPIO17ToggleBox: TToggleBox;
    procedure FormActivate(Sender: TObject);
    procedure FormClose(Sender: TObject; var CloseAction: TCloseAction);
    procedure GPIO17ToggleBoxChange(Sender: TObject);
  private
    { private declarations }
  public
    { public declarations }
  end;
 
const
  PIN_17: PChar = '17';
  PIN_ON: PChar = '1';
  PIN_OFF: PChar = '0';
  OUT_DIRECTION: PChar = 'out';
 
var
  Form1: TForm1;
  gReturnCode: longint; {stores the result of the IO operation}
 
implementation
 
{$R *.lfm}
 
{ TForm1 }
 
procedure TForm1.FormActivate(Sender: TObject);
var
  fileDesc: integer;
begin
  { Prepare SoC pin 17 (pin 11 on GPIO port) for access: }
  try
    fileDesc := fpopen('/sys/class/gpio/export', O_WrOnly);
    gReturnCode := fpwrite(fileDesc, PIN_17[0], 2);
    LogMemo.Lines.Add(IntToStr(gReturnCode));
  finally
    gReturnCode := fpclose(fileDesc);
    LogMemo.Lines.Add(IntToStr(gReturnCode));
  end;
  { Set SoC pin 17 as output: }
  try
    fileDesc := fpopen('/sys/class/gpio/gpio17/direction', O_WrOnly);
    gReturnCode := fpwrite(fileDesc, OUT_DIRECTION[0], 3);
    LogMemo.Lines.Add(IntToStr(gReturnCode));
  finally
    gReturnCode := fpclose(fileDesc);
    LogMemo.Lines.Add(IntToStr(gReturnCode));
  end;
end;
 
procedure TForm1.FormClose(Sender: TObject; var CloseAction: TCloseAction);
var
  fileDesc: integer;
begin
  { Free SoC pin 17: }
  try
    fileDesc := fpopen('/sys/class/gpio/unexport', O_WrOnly);
    gReturnCode := fpwrite(fileDesc, PIN_17[0], 2);
    LogMemo.Lines.Add(IntToStr(gReturnCode));
  finally
    gReturnCode := fpclose(fileDesc);
    LogMemo.Lines.Add(IntToStr(gReturnCode));
  end;
end;
 
procedure TForm1.GPIO17ToggleBoxChange(Sender: TObject);
var
  fileDesc: integer;
begin
  if GPIO17ToggleBox.Checked then
  begin
    { Swith SoC pin 17 on: }
    try
      fileDesc := fpopen('/sys/class/gpio/gpio17/value', O_WrOnly);
      gReturnCode := fpwrite(fileDesc, PIN_ON[0], 1);
      LogMemo.Lines.Add(IntToStr(gReturnCode));
    finally
      gReturnCode := fpclose(fileDesc);
      LogMemo.Lines.Add(IntToStr(gReturnCode));
    end;
  end
  else
  begin
    { Switch SoC pin 17 off: }
    try
      fileDesc := fpopen('/sys/class/gpio/gpio17/value', O_WrOnly);
      gReturnCode := fpwrite(fileDesc, PIN_OFF[0], 1);
      LogMemo.Lines.Add(IntToStr(gReturnCode));
    finally
      gReturnCode := fpclose(fileDesc);
      LogMemo.Lines.Add(IntToStr(gReturnCode));
    end;
  end;
end;
 
end.
Main program:
program io_test;
 
{$mode objfpc}{$H+}
 
uses
  {$IFDEF UNIX}{$IFDEF UseCThreads}
  cthreads,
  {$ENDIF}{$ENDIF}
  Interfaces, // this includes the LCL widgetset
  Forms, Unit1
  { you can add units after this };
 
{$R *.res}
 
begin
  Application.Initialize;
  Application.CreateForm(TForm1, Form1);
  Application.Run;
end.

Reading the status of a pin

Demo program for reading the status of a GPIO pin
Test circuit for GPIO access with the described program
Possible implementation of this test circuit
Of course it is also possible to read the status of e.g. a switch that is connected to the GPIO port.
The following simple example is very similar to the previous one. It controls the GPIO pin 18 as input for a binary device like a switch, transistor or relais. This program contains a CheckBox with nameGPIO18CheckBox and for logging return codes a TMemo called LogMemo.
For the example, one pole of a push-button has been connected to Pin 12 on the Pi's connector (corresponding to GPIO pin 18 of the BCM2835 SOC) and via a 10 kOhm pull-up resistor with pin 1 (+3.3V, see wiring diagram). The other pole has been wired to pin 6 of the connector (GND). The program senses the status of the button and correspondingly switches the CheckBox on or off, respectively.
Note that the potential of pin 18 is high if the button is released (by virtue of the connection to pin 1 via the pull-up resistor) and low if it is pressed (since in this situation pin 18 is connected to GND via the switch). Therefore, the GPIO pin signals 0 if the button is pressed and 1 if it is released.
This program has again to be executed as root.
Controlling unit:
unit Unit1;
 
{Demo application for GPIO on Raspberry Pi}
{Inspired by the Python input/output demo application by Gareth Halfacree}
{written for the Raspberry Pi User Guide, ISBN 978-1-118-46446-5}
 
{This application reads the status of a push-button}
 
{$mode objfpc}{$H+}
 
interface
 
uses
  Classes, SysUtils, FileUtil, Forms, Controls, Graphics, Dialogs, StdCtrls,
  ButtonPanel, Unix, BaseUnix;
 
type
 
  { TForm1 }
 
  TForm1 = class(TForm)
    ApplicationProperties1: TApplicationProperties;
    GPIO18CheckBox: TCheckBox;
    LogMemo: TMemo;
    procedure ApplicationProperties1Idle(Sender: TObject; var Done: Boolean);
    procedure FormActivate(Sender: TObject);
    procedure FormClose(Sender: TObject; var CloseAction: TCloseAction);
  private
    { private declarations }
  public
    { public declarations }
  end;
 
const
  PIN_18: PChar = '18';
  IN_DIRECTION: PChar = 'in';
 
var
  Form1: TForm1;
  gReturnCode: longint; {stores the result of the IO operation}
 
implementation
 
{$R *.lfm}
 
{ TForm1 }
 
procedure TForm1.FormActivate(Sender: TObject);
var
  fileDesc: integer;
begin
  { Prepare SoC pin 18 (pin 12 on GPIO port) for access: }
  try
    fileDesc := fpopen('/sys/class/gpio/export', O_WrOnly);
    gReturnCode := fpwrite(fileDesc, PIN_18[0], 2);
    LogMemo.Lines.Add(IntToStr(gReturnCode));
  finally
    gReturnCode := fpclose(fileDesc);
    LogMemo.Lines.Add(IntToStr(gReturnCode));
  end;
  { Set SoC pin 18 as input: }
  try
    fileDesc := fpopen('/sys/class/gpio/gpio18/direction', O_WrOnly);
    gReturnCode := fpwrite(fileDesc, IN_DIRECTION[0], 2);
    LogMemo.Lines.Add(IntToStr(gReturnCode));
  finally
    gReturnCode := fpclose(fileDesc);
    LogMemo.Lines.Add(IntToStr(gReturnCode));
  end;
end;
 
procedure TForm1.ApplicationProperties1Idle(Sender: TObject; var Done: Boolean);
var
  fileDesc: integer;
  buttonStatus: string[1] = '1';
begin
  try
    { Open SoC pin 18 (pin 12 on GPIO port) in read-only mode: }
    fileDesc := fpopen('/sys/class/gpio/gpio18/value', O_RdOnly);
    if fileDesc > 0 then
    begin
      { Read status of this pin (0: button pressed, 1: button released): }
      gReturnCode := fpread(fileDesc, buttonStatus[1], 1);
      LogMemo.Lines.Add(IntToStr(gReturnCode) + ': ' + buttonStatus);
      LogMemo.SelStart := Length(LogMemo.Lines.Text) - 1;
      if buttonStatus = '0' then
        GPIO18CheckBox.Checked := true
      else
        GPIO18CheckBox.Checked := false;
    end;
  finally
    { Close SoC pin 18 (pin 12 on GPIO port) }
    gReturnCode := fpclose(fileDesc);
    LogMemo.Lines.Add(IntToStr(gReturnCode));
    LogMemo.SelStart := Length(LogMemo.Lines.Text) - 1;
  end;
end;
 
procedure TForm1.FormClose(Sender: TObject; var CloseAction: TCloseAction);
var
  fileDesc: integer;
begin
  { Free SoC pin 18: }
  try
    fileDesc := fpopen('/sys/class/gpio/unexport', O_WrOnly);
    gReturnCode := fpwrite(fileDesc, PIN_18[0], 2);
    LogMemo.Lines.Add(IntToStr(gReturnCode));
  finally
    gReturnCode := fpclose(fileDesc);
    LogMemo.Lines.Add(IntToStr(gReturnCode));
  end;
end;
 
end.
The main program is identical to that of the example from above.

2. Hardware access via encapsulated shell calls

Another way to access the hardware is by encapsulating terminal commands. This is achieved by using the fpsystem function. This method gives access to functions that are not supported by the BaseUnix unit. The following code implements a program that has the same functionality as the program resulting from the first listing above.
Controlling unit:
unit Unit1;
 
{Demo application for GPIO on Raspberry Pi}
{Inspired by the Python input/output demo application by Gareth Halfacree}
{written for the Raspberry Pi User Guide, ISBN 978-1-118-46446-5}
 
{$mode objfpc}{$H+}
 
interface
 
uses
  Classes, SysUtils, FileUtil, Forms, Controls, Graphics, Dialogs, StdCtrls, Unix;
 
type
 
  { TForm1 }
 
  TForm1 = class(TForm)
    LogMemo: TMemo;
    GPIO17ToggleBox: TToggleBox;
    procedure FormActivate(Sender: TObject);
    procedure FormClose(Sender: TObject; var CloseAction: TCloseAction);
    procedure GPIO17ToggleBoxChange(Sender: TObject);
  private
    { private declarations }
  public
    { public declarations }
  end;
 
var
  Form1: TForm1;
  gReturnCode: longint; {stores the result of the IO operation}
 
implementation
 
{$R *.lfm}
 
{ TForm1 }
 
procedure TForm1.FormActivate(Sender: TObject);
begin
  { Prepare SoC pin 17 (pin 11 on GPIO port) for access: }
  gReturnCode := fpsystem('echo "17" > /sys/class/gpio/export');
  LogMemo.Lines.Add(IntToStr(gReturnCode));
  { Set SoC pin 17 as output: }
  gReturnCode := fpsystem('echo "out" > /sys/class/gpio/gpio17/direction');
  LogMemo.Lines.Add(IntToStr(gReturnCode));
end;
 
procedure TForm1.FormClose(Sender: TObject; var CloseAction: TCloseAction);
begin
  { Free SoC pin 17: }
  gReturnCode := fpsystem('echo "17" > /sys/class/gpio/unexport');
  LogMemo.Lines.Add(IntToStr(gReturnCode));
end;
 
procedure TForm1.GPIO17ToggleBoxChange(Sender: TObject);
begin
  if GPIO17ToggleBox.Checked then
  begin
    { Swith SoC pin 17 on: }
    gReturnCode := fpsystem('echo "1" > /sys/class/gpio/gpio17/value');
    LogMemo.Lines.Add(IntToStr(gReturnCode));
  end
  else
  begin
    { Switch SoC pin 17 off: }
    gReturnCode := fpsystem('echo "0" > /sys/class/gpio/gpio17/value');
    LogMemo.Lines.Add(IntToStr(gReturnCode));
  end;
end;
 
end.
The main program is identical to that of the example above. This program has to be executed with root privileges, too.

3. wiringPi procedures and functions

Alex Schaller's wrapper unit for Gordon Henderson's Arduino compatible wiringPi library provides a numbering scheme that resembles that of Arduino boards.
Function wiringPiSetup:longint: Initializes wiringPi system using the wiringPi pin numbering scheme.
Procedure wiringPiGpioMode(mode:longint): Initializes wiringPi system with the Broadcom GPIO pin numbering scheme.
Procedure pullUpDnControl(pin:longint; pud:longint): controls the internal pull-up/down resistors on a GPIO pin.
Procedure pinMode(pin:longint; mode:longint): sets the mode of a pin to either INPUT, OUTPUT, or PWM_OUTPUT.
Procedure digitalWrite(pin:longint; value:longint): sets an output bit.
Procedure pwmWrite(pin:longint; value:longint): sets an output PWM value between 0 and 1024.
Function digitalRead(pin:longint):longint: reads the value of a given Pin, returning 1 or 0.
Procedure delay(howLong:dword): waits for at least howLong milliseconds.
Procedure delayMicroseconds(howLong:dword): waits for at least howLong microseconds.
Function millis:dword: returns the number of milliseconds since the program called one of the wiringPiSetup functions.

4. rpi_hal-Hardware Abstraction Library (GPIO, I2C and SPI functions and procedures)

This Unit with around 1700 Lines of Code provided by Stefan Fischer, delivers procedures and functions to access the rpi HW I2C, SPI and GPIO:
Just an excerpt of the available functions and procedures:
procedure gpio_set_pin (pin:longword;highlevel:boolean); { Set RPi GPIO pin to high or low level; Speed @ 700MHz -> 0.65MHz }
function gpio_get_PIN (pin:longword):boolean; { Get RPi GPIO pin Level is true when Pin level is '1'; false when '0'; Speed @ 700MHz -> 1.17MHz }
procedure gpio_set_input (pin:longword); { Set RPi GPIO pin to input direction }
procedure gpio_set_output(pin:longword); { Set RPi GPIO pin to output direction }
procedure gpio_set_alt (pin,altfunc:longword); { Set RPi GPIO pin to alternate function nr. 0..5 }
procedure gpio_set_gppud (mask:longword); { set RPi GPIO Pull-up/down Register (GPPUD) with mask }
...
function rpi_snr :string; { delivers SNR: 0000000012345678 }
function rpi_hw  :string; { delivers Processor Type: BCM2708 }
function rpi_proc:string; { ARMv6-compatible processor rev 7 (v6l) }
...
function i2c_bus_write(baseadr,reg:word; var data:databuf_t; lgt:byte; testnr:integer) : integer;
function i2c_bus_read (baseadr,reg:word; var data:databuf_t; lgt:byte; testnr:integer) : integer;
function i2c_string_read(baseadr,reg:word; var data:databuf_t; lgt:byte; testnr:integer) : string;
function i2c_string_write(baseadr,reg:word; s:string; testnr:integer) : integer;
...
procedure SPI_Write(devnum:byte; reg,data:word);
function SPI_Read(devnum:byte; reg:word) : byte;
procedure SPI_BurstRead2Buffer (devnum,start_reg:byte; xferlen:longword);
procedure SPI_BurstWriteBuffer (devnum,start_reg:byte; xferlen:longword); { Write 'len' Bytes from Buffer SPI Dev startig at address 'reg' }
...

Test Program (testrpi.pas):
//Simple Test program, which is using rpi_hal;
 
  program testrpi;
  uses rpi_hal;
  begin
    writeln('Show CPU-Info, RPI-HW-Info and Registers:');
    rpi_show_all_info;
    writeln('Let Status LED Blink. Using GPIO functions:');
    GPIO_PIN_TOGGLE_TEST;
    writeln('Test SPI Read function. (piggy back board with installed RFM22B Module is required!)');
    Test_SPI;
  end.

5. PiGpio Low-level native pascal unit (GPIO control instead of wiringPi c library)

This Unit (pigpio.pas[2]) with 270 Lines of Code provided by Gabor Szollosi, works very fast (for ex. GPIO pin output switching frequency 8 MHz) :
unit PiGpio;
{
 BCM2835 GPIO Registry Driver, also can use to manipulate cpu other registry areas
 
 This code is tested only Broadcom bcm2835 cpu, different arm cpus may need different
 gpio driver implementation
 
 2013 Gabor Szollosi
}
{$mode objfpc}{$H+}
 
interface
 
uses
  Classes, SysUtils;
 
const
  REG_GPIO = $20000;//bcm2835 gpio register 0x2000 0000. new fpMap uses page offset, one page is 4096bytes
  // hex 0x1000 so simply calculate 0x2000 0000 / 0x1000  = 0x2000 0
  PAGE_SIZE = 4096;
  BLOCK_SIZE = 4096;
    // The BCM2835 has 54 GPIO pins.
// BCM2835 data sheet, Page 90 onwards.
// There are 6 control registers, each control the functions of a block
// of 10 pins.
 
  CLOCK_BASE = (REG_GPIO + $101);
  GPIO_BASE =  (REG_GPIO + $200);
  GPIO_PWM =   (REG_GPIO + $20C);
 
     INPUT = 0;
     OUTPUT = 1;
     PWM_OUTPUT = 2;
     LOW = False;
     HIGH = True;
     PUD_OFF = 0;
     PUD_DOWN = 1;
     PUD_UP = 2;
 
   // PWM
 
  PWM_CONTROL = 0;
  PWM_STATUS  = 4;
  PWM0_RANGE  = 16;
  PWM0_DATA   = 20;
  PWM1_RANGE  = 32;
  PWM1_DATA   = 36;
 
  PWMCLK_CNTL = 160;
  PWMCLK_DIV  = 164;
 
  PWM1_MS_MODE    = $8000;  // Run in MS mode
  PWM1_USEFIFO    = $2000; // Data from FIFO
  PWM1_REVPOLAR   = $1000;  // Reverse polarity
  PWM1_OFFSTATE   = $0800;  // Ouput Off state
  PWM1_REPEATFF   = $0400;  // Repeat last value if FIFO empty
  PWM1_SERIAL     = $0200;  // Run in serial mode
  PWM1_ENABLE     = $0100;  // Channel Enable
 
  PWM0_MS_MODE    = $0080;  // Run in MS mode
  PWM0_USEFIFO    = $0020;  // Data from FIFO
  PWM0_REVPOLAR   = $0010;  // Reverse polarity
  PWM0_OFFSTATE   = $0008;  // Ouput Off state
  PWM0_REPEATFF   = $0004;  // Repeat last value if FIFO empty
  PWM0_SERIAL     = $0002;  // Run in serial mode
  PWM0_ENABLE     = $0001;  // Channel Enable
 
 
type
 
  { TIoPort }
 
  TIoPort = class // IO bank object
  private         //
 
    //function get_pinDirection(aPin: TGpIoPin): TGpioPinConf;
 
  public
   FGpio: ^LongWord;
   FClk: ^LongWord;
   FPwm: ^LongWord;
   procedure SetPinMode(gpin, mode: byte);
   function GetBit(gpin : byte):boolean;inline; // gets pin bit}
   procedure ClearBit(gpin : byte);inline;// write pin to 0
   procedure SetBit(gpin : byte);inline;// write pin to 1
   procedure SetPullMode(gpin, mode: byte);
   procedure PwmWrite(gpin : byte; value : LongWord);inline;// write pin to pwm value
  end;
 
  { TIoDriver }
 
  TIoDriver = class
  private
 
  public
    destructor Destroy;override;
    function MapIo:boolean;// creates io memory mapping
    procedure UnmapIoRegisrty(FMap: TIoPort);// close io memory mapping
    function CreatePort(PortGpio, PortClk, PortPwm: LongWord):TIoPort; // create new IO port
  end;
 
var
 
    fd: integer;// /dev/mem file handle
procedure delayNanoseconds (howLong : LongWord);
 
 
implementation
 
uses
  baseUnix, Unix;
 
procedure delayNanoseconds (howLong : LongWord);
var
  sleeper, dummy : timespec;
begin
  sleeper.tv_sec  := 0 ;
  sleeper.tv_nsec := howLong ;
  fpnanosleep (@sleeper,@dummy) ;
end;
{ TIoDriver }
//*******************************************************************************
destructor TIoDriver.Destroy;
begin
  inherited Destroy;
end;
//*******************************************************************************
function TIoDriver.MapIo: boolean;
begin
 Result := True;
 fd := fpopen('/dev/mem', O_RdWr or O_Sync); // Open the master /dev/memory device
  if fd < 0 then
  begin
    Result := False; // unsuccessful memory mapping
  end;
 //
end;
//*******************************************************************************
procedure TIoDriver.UnmapIoRegisrty(FMap:TIoPort);
begin
  if FMap.FGpio <> nil then
 begin
   fpMUnmap(FMap.FGpio,PAGE_SIZE);
   FMap.FGpio := Nil;
 end;
 if FMap.FClk <> nil then
 begin
   fpMUnmap(FMap.FClk,PAGE_SIZE);
   FMap.FClk := Nil;
 end;
 if FMap.FPwm <> nil then
 begin
   fpMUnmap(FMap.FPwm ,PAGE_SIZE);
   FMap.FPwm := Nil;
 end;
end;
//*******************************************************************************
function TIoDriver.CreatePort(PortGpio, PortClk, PortPwm: LongWord): TIoPort;
begin
  Result := TIoPort.Create;// new io port, pascal calls new fpMap, where offst is page sized 4096 bytes!!!
  Result.FGpio := FpMmap(Nil, PAGE_SIZE, PROT_READ or PROT_WRITE, MAP_SHARED, fd, PortGpio); // port config gpio memory
  Result.FClk:= FpMmap(Nil, PAGE_SIZE, PROT_READ or PROT_WRITE, MAP_SHARED, fd, PortClk);; // port clk
  Result.FPwm:= FpMmap(Nil, PAGE_SIZE, PROT_READ or PROT_WRITE, MAP_SHARED, fd, PortPwm);; // port pwm
end;
//*******************************************************************************
procedure TIoPort.SetPinMode(gpin, mode: byte);
var
  fSel, shift, alt : byte;
  gpiof, clkf, pwmf : ^LongWord;
begin
  fSel := (gpin div 10)*4 ;  //Select Gpfsel 0 to 5 register
  shift := (gpin mod 10)*3 ;  //0-9 pin shift
  gpiof := Pointer(LongWord(Self.FGpio)+fSel);
  if (mode = INPUT) then
    gpiof^ := gpiof^ and ($FFFFFFFF - (7 shl shift))  //7 shl shift komplemens - Sets bits to zero = input
  else if (mode = OUTPUT) then
  begin
    gpiof^ := gpiof^ and ($FFFFFFFF - (7 shl shift)) or (1 shl shift);
  end
  else if (mode = PWM_OUTPUT) then
  begin
    Case gpin of
      12,13,40,41,45 : alt:= 4 ;
      18,19          : alt:= 2 ;
      else alt:= 0 ;
    end;
    If alt > 0 then
    begin
      gpiof^ := gpiof^ and ($FFFFFFFF - (7 shl shift)) or (alt shl shift);
      clkf := Pointer(LongWord(Self.FClk)+PWMCLK_CNTL);
      clkf^ := $5A000011 or (1 shl 5) ;                  //stop clock
      delayNanoseconds(200);
      clkf := Pointer(LongWord(Self.FClk)+PWMCLK_DIV);
      clkf^ := $5A000000 or (32 shl 12) ; // set pwm clock div to 32 (19.2/3 = 600KHz)
      clkf := Pointer(LongWord(Self.FClk)+PWMCLK_CNTL);
      clkf^ := $5A000011 ;                               //start clock
      Self.ClearBit(gpin);
      pwmf := Pointer(LongWord(Self.FPwm)+PWM_CONTROL);
      pwmf^ := 0 ;            // Disable PWM
      delayNanoseconds(200);
      pwmf := Pointer(LongWord(Self.FPwm)+PWM0_RANGE);
      pwmf^ := $400 ;                             //max: 1023
      delayNanoseconds(200);
      pwmf := Pointer(LongWord(Self.FPwm)+PWM1_RANGE);
      pwmf^ := $400 ;                             //max: 1023
      delayNanoseconds(200);
      // Enable PWMs
      pwmf := Pointer(LongWord(Self.FPwm)+PWM0_DATA);
      pwmf^ := 0 ;                                //start value
      pwmf := Pointer(LongWord(Self.FPwm)+PWM1_DATA);
      pwmf^ := 0 ;                                //start value
      pwmf := Pointer(LongWord(Self.FPwm)+PWM_CONTROL);
      pwmf^ := PWM0_ENABLE or PWM1_ENABLE ;
    end;
  end;
end;
//*******************************************************************************
procedure TIoPort.SetBit(gpin : byte);
var
   gpiof : ^LongWord;
begin
  gpiof := Pointer(LongWord(Self.FGpio) + 28 + (gpin shr 5) shl 2);
  gpiof^ := 1 shl gpin;
end;
//*******************************************************************************
procedure TIoPort.ClearBit(gpin : byte);
var
   gpiof : ^LongWord;
begin
  gpiof := Pointer(LongWord(Self.FGpio) + 40 + (gpin shr 5) shl 2);
  gpiof^ := 1 shl gpin;
end;
//*******************************************************************************
function TIoPort.GetBit(gpin : byte):boolean;
var
   gpiof : ^LongWord;
begin
  gpiof := Pointer(LongWord(Self.FGpio) + 52 + (gpin shr 5) shl 2);
  if (gpiof^ and (1 shl gpin)) = 0 then Result := False else Result := True;
end;
//*******************************************************************************
procedure TIoPort.SetPullMode(gpin, mode: byte);
var
   pudf, pudclkf : ^LongWord;
begin
  pudf := Pointer(LongWord(Self.FGpio) + 148 );
  pudf^ := mode;   //mode = 0, 1, 2 :Off, Down, Up
  delayNanoseconds(200);
  pudclkf := Pointer(LongWord(Self.FGpio) + 152 + (gpin shr 5) shl 2);
  pudclkf^ := 1 shl gpin ;
  delayNanoseconds(200);
  pudf^ := 0 ;
  pudclkf^ := 0 ;
end;
//*******************************************************************************
procedure TIoPort.PwmWrite(gpin : byte; value : Longword);
var
   pwmf : ^LongWord;
   port : byte;
begin
  Case gpin of
      12,18,40 : port:= PWM0_DATA ;
      13,19,41,45 : port:= PWM1_DATA ;
      else exit;
  end;
  pwmf := Pointer(LongWord(Self.FPwm) + port);
  pwmf^ := value and $FFFFFBFF; // $400 complemens
end;
//*******************************************************************************
end.
Controlling Lazarus unit:(Project files[3])
unit Unit1;
 
{Demo application for GPIO on Raspberry Pi}
{Inspired by the Python input/output demo application by Gareth Halfacree}
{written for the Raspberry Pi User Guide, ISBN 978-1-118-46446-5}
 
{$mode objfpc}{$H+}
 
interface
 
uses
  Classes, SysUtils, FileUtil, Forms, Controls, Graphics, Dialogs, StdCtrls,
  ExtCtrls, Unix, PiGpio;
 
type
 
  { TForm1 }
 
  TForm1 = class(TForm)
    GPIO25In: TButton;
    SpeedButton: TButton;
    LogMemo: TMemo;
    GPIO23switch: TToggleBox;
    Timer1: TTimer;
    GPIO18Pwm: TToggleBox;
    Direction: TToggleBox;
    procedure DirectionChange(Sender: TObject);
    procedure GPIO18PwmChange(Sender: TObject);
    procedure GPIO25InClick(Sender: TObject);
    procedure FormActivate(Sender: TObject);
    procedure FormClose(Sender: TObject; var CloseAction: TCloseAction);
    procedure GPIO23switchChange(Sender: TObject);
    procedure SpeedButtonClick(Sender: TObject);
    procedure Timer1Timer(Sender: TObject);
  private
    { private declarations }
  public
    { public declarations }
  end;
 
const
     INPUT = 0;
     OUTPUT = 1;
     PWM_OUTPUT = 2;
     LOW = False;
     HIGH = True;
     PUD_OFF = 0;
     PUD_DOWN = 1;
     PUD_UP = 2;
 // Convert Raspberry Pi P1 pins (Px) to GPIO port
     P3 = 0;
     P5 = 1;
     P7 = 4;
     P8 = 14;
     P10 = 15;
     P11 = 17;
     P12 = 18;
     P13 = 21;
     P15 = 22;
     P16 = 23;
     P18 = 24;
     P19 = 10;
     P21 = 9;
     P22 = 25;
     P23 = 11;
     P24 = 8;
     P26 = 7;
 
var
  Form1: TForm1;
  GPIO_Driver: TIoDriver;
  GpF: TIoPort;
  PWM :Boolean;
  i, d : integer;
  Pin,Pout,Ppwm : byte;
 
implementation
 
{$R *.lfm}
 
{ TForm1 }
 
procedure TForm1.FormActivate(Sender: TObject);
begin
  if not GPIO_Driver.MapIo then
  begin
     LogMemo.Lines.Add('Error mapping gpio registry');
  end
  else
  begin
    GpF := GpIo_Driver.CreatePort(GPIO_BASE, CLOCK_BASE, GPIO_PWM);
  end ;
  Timer1.Enabled:= True;
  Timer1.Interval:= 25;     //25 ms controll interval
  Pin := P22;
  Pout := P16;
  Ppwm := P12;
  i:=1;
  GpF.SetPinMode(Pout,OUTPUT);
  GpF.SetPinMode(Pin,INPUT);
  GpF.SetPullMode(Pin,PUD_Up);    // Input PullUp High level
end;
 
procedure TForm1.GPIO25InClick(Sender: TObject);
begin
  If GpF.GetBit(Pin) then LogMemo.Lines.Add('In: '+IntToStr(1))
                     else LogMemo.Lines.Add('In: '+IntToStr(0));
end;
 
procedure TForm1.GPIO18PwmChange(Sender: TObject);
begin
  if GPIO18Pwm.Checked then
  begin
    GpF.SetPinMode(Ppwm,PWM_OUTPUT);
    PWM := True;                          //PWM on
  end
  else
  begin
    GpF.SetPinMode(Ppwm,INPUT);
    PWM := False;                          //PWM off
  end;
end;
 
procedure TForm1.DirectionChange(Sender: TObject);
begin
  if Direction.Checked then d:=10 else d:=-10;
end;
 
 
procedure TForm1.FormClose(Sender: TObject; var CloseAction: TCloseAction);
begin
    GpF.SetPinMode(Ppwm,INPUT);
    GpF.ClearBit(Pout);
    GpIo_Driver.UnmapIoRegisrty(GpF);
end;
 
procedure TForm1.GPIO23switchChange(Sender: TObject);
 
Begin
  Timer1.Enabled := False;
  if GPIO23switch.Checked then
  begin
    GpF.SetBit(Pout); //Turn LED on
  end
  else
  begin
    GpF.ClearBit(Pout); //Turn LED off
  end;
  Timer1.Enabled := True;
end;
 
procedure TForm1.SpeedButtonClick(Sender: TObject);
var
  i,p,k,v: longint;
  ido:TDateTime;
begin
  ido:= Time;
  k:= TimeStampToMSecs(DateTimeToTimeStamp(ido));
  LogMemo.Lines.Add('Start: '+TimeToStr(ido));
  p:=10000000 ;
  For i:=1 to p  do Begin
    GpF.SetBit(P16);
    GpF.ClearBit(P16);
  end;
  ido:= Time;
  v:= TimeStampToMSecs(DateTimeToTimeStamp(ido));
  LogMemo.Lines.Add('Stop: '+TimeToStr(ido)+' Frequency: '+
                                IntToStr(p div (v-k))+' kHz');
end;
 
procedure TForm1.Timer1Timer(Sender: TObject);
begin
  If PWM then Begin
    If (d > 0) and (i+d < 1024) then begin
          i:=i+d;
          GpF.PwmWrite(Ppwm,i);
    end ;
    If (d < 0) and (i+d > -1) then begin
          i:=i+d;
          GpF.PwmWrite(Ppwm,i);
    end;
  end;
end;
 
 
end.

8/21/2015

REDUCING ESP8266 POWER CONSUMPTION USING DEEP SLEEP

MARCH 8, 2015

In my previous post, I mentioned that one of the reasons that I was excited about MQTT was because of its potential to allow power savings schemes on the ESP8266. The MQTT broker could asynchronously hold messages during the period that the ESP8266 was in a sleep cycle, to ensure that nothing is missed while dramatically reducing average power consumption.
This week I have hit a few obstacles, mainly due to the immaturity of current implementations of some of the latest MQTT qos (quality of service) features – at least that is what I suspect at this point. But more on that next week.
So, focusing on the ESP8266: my initial research had led me to believe that “deep sleep” mode was the way to go. Who can argue with using just 78μA during deep sleep?
To be able to implement deep sleep (without adding extra hardware to generate a wake-up signal), you need to link 2 pins on the ESP8266, as discussed here. Fortunately, the ESP-03 module has pads broken out on the PCB that you can join together. By linking these, you lose the ability to use GPIO16, but gain an automatic wake-up from deep sleep after the number of microseconds that you specify in the system_deep_sleep(time_in_us) call. You can understand better how this works by looking at the ESP-03 schematic.
To avoid any confusion, the pads to join are shown below:
ESP-03-rst1
ESP-03-rst2
The easiest method to achieve this would be to use a zero ohm SMD resistor. I didn’t have any, so I used a short section of 30awg wire-wrap wire which I first tinned and then snipped to the correct length. I had a moment of difficulty getting the piece of wire to unstick from the soldering iron tip. An approach that worked better on my second device was to solder one end of the small wire link first. Surface tension then helps hold the link down onto the board while you finish.
IMG_4373m2
To test it out, I put this command at the end of the mqttDataCb routine so that deep sleep would be initiated when I sent an MQTT message to the ESP8266:
1
system_deep_sleep(30000000);
Sure enough, the device went to sleep, and woke up after 30 seconds!
What I hadn’t fully appreciated was that the device does a FULL RESET, starting up again and re-running user_init(). This means that the ESP8266 has to re-establish connectivity, both to the Wi-FI and the MQTT broker, which can take much longer than I would like. Two of the steps that seemed to take time (sporadically), were talking to the DHCP server, and the DNS resolution of the MQTT broker.
Firstly, to eliminate the DHCP step, I found this useful code, which allows you to specify a static ip for the ESP8266 (note that I have hardcoded my information). The code goes into the WIFI_Connect routine found in wifi.c.
1
2
3
4
5
6
7
8
struct ip_info info;
 
info.ip.addr = ipaddr_addr("192.168.1.18");
 
info.netmask.addr = ipaddr_addr("255.255.255.0");
info.gw.addr = ipaddr_addr("192.168.1.254");
 
wifi_set_ip_info(STATION_IF, &info);
Secondly, to eliminate the DNS step, I configured the ip address of the MQTT broker, instead of its name.
With this streamlining in place, and when everything connects smoothly, waking up still takes 5 – 6 seconds. This would be perfectly acceptable in a typical scenario where the ESP8266 is acting as a sensor, sending readings periodically. Even sending a reading once per minute, the device could be in deep sleep for 90% of the time. Sending only once every 5 minutes translates into deep sleep for 98% of the time, and so on… you get the idea.
But in my wristband project, where the ESP8266 is waiting to receive an alert preferably with a latency of under 10 seconds, this deep sleep approach is (sadly) unworkable.
What about the other sleep modes? The information about these is rather scattered and scarce. The best I could find was this and this.
For these sleep modes, you do not specifically issue a sleep command. Rather, you specify a sleep type using wifi_set_sleep_type(sleep_type), which the ESP8266 then implements in the background.
Sleep type can be one of three values:
NONE_SLEEP_T
LIGHT_SLEEP_T
MODEM_SLEEP_T
MODEM_SLEEP_T is the default, NONE_SLEEP_T means even less power saving, so LIGHT_SLEEP_Tsounds hopeful in that it reduces CPU power in addition to Wi-FI power.
But how do you actually compare power consumption? Using a meter is no good, as the current drawn is fluctuating all the time.
DS0003DS0002To get an idea of what was going on, I connected an oscilloscope across a 1 ohm resistor placed in series with the power supply to my esp8266 breadboard. With default power savings settings, these images show the activity I observed while the ESP8266 was functioning as an MQTT client. I don’t know precisely the value of my 1 ohm resistor, so can only approximate the current consumption. But to provide some scale, the base is about 13mA, the steps are 70mA, and the brief spikes go above 300mA.
light1light2Next, I tested the light sleep mode by calling wifi_set_sleep_type (LIGHT_SLEEP_T ) at the end of the user_init() routine. The consumption was markedly reduced. Now the overall base was effectively zero (below what I could measure using this simple method), the next base up was at 10mA, the steps 60mA and the spikes to over 250mA.
I really need something that integrates over time to gauge the overall power consumption!
So, all in all, some interesting findings, although more relevant to other ESP8266 projects and not so much to my wristband.
CREDIT : Malcolm Yeomanhttp://tinker.yeoman.com.au/2015/03/08/reducing-esp8266-power-consumption-using-deep-sleep/

8/17/2015

Rise of the Cy-Clops Scene 1 : Hello my Pi


    I've got my Raspberry Pi today! Hmmm.... looks smart... what I can play with this smart guy....
I plan to run Windows-10 IoT core as OS and play with computer vision to make it alive!  ...
It's time for Cy-Clops Machine !







to be continue .....

7/21/2015

What is "Blocking vs Non-blocking" coding style

Synchronous vs Asynchronous

Synchronous execution usually refers to code executing in sequence. Asynchronous execution refers to execution that doesn't run in the sequence it appears in the code. In the following example, the synchronous operation causes the alerts to fire in sequence. In the async operation, while alert(2)appears to execute second, it doesn't.
// Synchronous: 1,2,3
alert(1);
alert(2);
alert(3);

// Asynchronous: 1,3,2
alert(1);
setTimeout(() => alert(2), 0);
alert(3);

Blocking vs Non-blocking

Blocking refers to operations that block further execution until that operation finishes. Non-blocking refers to code that doesn't block execution. In the given example, localStorage is a blocking operation as it stalls execution to read. On the other hand, fetch is a non-blocking operation as it does not stall alert(3) from execution.
// Blocking: 1,... 2
alert(1);
var value = localStorage.getItem('foo');
alert(2);

// Non-blocking: 1, 3,... 2
alert(1);
$.fetch('example.com').then(() => alert(2));
alert(3);

Advantages

One advantage of non-blocking operations is that the CPU can be kept busy and can save you memory.

Blocking example

An example of blocking is how some web servers like ones in Java or PHP handle requests. If your code does something blocking, like reading something from the database, your code "stalls" at that line and waits for the operation to finish. In that period, your machine is holding onto memory and processing time for a thread that isn't doing anything.
In order to cater other requests while that thread has stalled depends on your setup. Your server can spawn more threads to cater the request or, if you have a load balancing setup, forwards requests to the next available instance. This instills more setup, more memory consumed, more processing.

Non-blocking example

In contrast, non-blocking servers like ones ones made in Node.JS, only use one thread to service all requests. This might sound counter-intuitive, but the creators designed it with the idea that the I/O is the bottleneck i.e. not computations. This also means an instance of Node makes the most out of a single core. Nothing stops you from spawning another instance to take up another core if you want to get the most out of your hardware as well.
When requests arrive at the server, they are serviced one at a time. When the code serviced needs to query the DB for example, it sends off a request to the DB. However, instead of waiting for the response and stall, it sends the callback to a second queue and the code continues running. Now when the DB returns data, the callback gets queued in a third queue where they are pending execution. When the engine is doing nothing (stack empty), it picks up a callback from the third queue and executes it.

May 13 '12 at 8:14